Race Against the Machine

Will work for a battery charge...

Will work for a battery charge…

The Race Against the Machine is the title of a book by Erik Brynjolfsson, director of the MIT Center for Digital Business and a professor at the MIT Sloan School, and Andrew McAfee, a principal research scientist at MIT’s Center for Digital Business. In it, they write that

We wrote this book because we believe that digital technologies are one of the most important driving forces in the economy today. They’re transforming the world of work and are key drivers of productivity and growth. Yet their impact on employment is not well understood, and definitely not fully appreciated. When people talk about jobs in America today, they talk about cyclicality, outsourcing and off-shoring, taxes and regulation, and the wisdom and efficacy of different kinds of stimulus. We don’t doubt the importance of all these factors. The economy is a complex, multifaceted entity.

But there has been relatively little talk about role of acceleration of technology. It may seem paradoxical that faster progress can hurt wages and jobs for millions of people, but we argue that’s what’s been happening. As we’ll show, computers are now doing many things that used to be the domain of people only. The pace and scale of this encroachment into human skills is relatively recent and has profound economic implications. Perhaps the most important of these is that while digital progress grows the overall economic pie, it can do so while leaving some people, or even a lot of them, worse off.

And computers (hardware, software, and networks) are only going to get more powerful and capable in the future, and have an ever-bigger impact on jobs, skills, and the economy. The root of our problems is not that we’re in a Great Recession, or a Great Stagnation, but rather that we are in the early throes of a Great Restructuring. Our technologies are racing ahead but many of our skills and organizations are lagging behind. So it’s urgent that we understand these phenomena, discuss their implications, and come up with strategies that allow human workers to race ahead with machines instead of racing against them.

In a recent article, The Economist wrote

Ten years ago technologically minded economists pointed to driving cars in traffic as the sort of human accomplishment that computers were highly unlikely to master. Now Google cars are rolling round California driver-free no one doubts such mastery is possible, though the speed at which fully self-driving cars will come to market remains hard to guess.

Even after computers beat grandmasters at chess (once thought highly unlikely), nobody thought they could take on people at free-form games played in natural language. Then Watson, a pattern-recognising supercomputer developed by IBM, bested the best human competitors in America’s popular and syntactically tricky general-knowledge quiz show “Jeopardy!” Versions of Watson are being marketed to firms across a range of industries to help with all sorts of pattern-recognition problems. Its acumen will grow, and its costs fall, as firms learn to harness its abilities.

The machines are not just cleverer, they also have access to far more data. The combination of big data and smart machines will take over some occupations wholesale; in others it will allow firms to do more with fewer workers. Text-mining programs will displace professional jobs in legal services. Biopsies will be analysed more efficiently by image-processing software than lab technicians. Accountants may follow travel agents and tellers into the unemployment line as tax software improves. Machines are already turning basic sports results and financial data into good-enough news stories.

Jobs that are not easily automated may still be transformed. New data-processing technology could break “cognitive” jobs down into smaller and smaller tasks.

Being newly able to do brain work will not stop computers from doing ever more formerly manual labour; it will make them better at it. The designers of the latest generation of industrial robots talk about their creations as helping workers rather than replacing them; but there is little doubt that the technology will be able to do a bit of both—probably more than a bit. A taxi driver will be a rarity in many places by the 2030s or 2040s.

That sounds like bad news for journalists who rely on that most reliable source of local knowledge and prejudice—but will there be many journalists left to care? Will there be airline pilots? Or traffic cops? Or soldiers?There will still be jobs. Even Mr Frey and Mr Osborne, whose research speaks of 47% of job categories being open to automation within two decades, accept that some jobs—especially those currently associated with high levels of education and high wages—will survive (see table). Tyler Cowen, an economist at George Mason University and a much-read blogger, writes in his most recent book, “Average is Over”, that rich economies seem to be bifurcating into a small group of workers with skills highly complementary with machine intelligence, for whom he has high hopes, and the rest, for whom not so much.

20140118_FBC152